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Chemical Potential Prediction in Realistic 
Fluid Models with Scaled Particle Theory I 

D. M. Pfund, 2 L. L. Lee,  2 and H. D.  Coehran 3 

A procedure frequently proposed in the literature for calculating chemical 
potentials relies on the Kirkwood charging process. Numerical problems 
associated with coupling large repulsive forces can be avoided by estimating the 
contribution to the chemical potential due to these forces with scaled particle 
theory. The contribution due to soft repulsive forces and attractive forces can be 
calculated with the Kirkwood charging process using distribution functions for 
a test particle obtained from integral equation theories. We have used the 
accurate HMSA theory of Zerah and Hansen to provide distribution functions 
in mixtures of Lennard-Jones molecules, and we have used the PYP theory of 
Lee to scale the distribution functions over the charging process. The theory 
provides accurate estimates of chemical potentials over a range of densities from 
gas-like to liquid-like when the reduced temperature kT/e is greater than 2. 
Accurate results for excess free energy changes of mixing are also obtained at 
these conditions. At lower temperatures accurate results are obtained for low to 
moderate reduced densities (po-3 ~< 0.5). 

KEY WORDS: chemical potential; Kirkwood charging process; Lennard- 
Jones fluid; scaled particle theory. 

1. I N T R O D U C T I O N  

Scaled particle theory (SPT) provides an expression for the chemical 
potential of a hard sphere solute in a fluid mixture. The theory was 
originally applied to the calculation of the chemical potential of a hard 
sphere in a pure fluid of hard spheres [ 1 ]. Central to the theory is the dis- 
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tribution function G(r + R), which is defined to be the local concentration 
of molecular centers adjacent to a spherical cavity of radius r from which 
all molecular centers have been excluded [2]. Thus G(r + R) is equal to the 
contact value of the radial distribution function for the hard sphere bath 
molecules about the test particle. SPT postulates a particular functional 
form for the G and a procedure for evaluating the constants in the function. 
With the G function specified the work of forming a cavity of any radius 
can be calculated. When the cavity formed has radius 2R, then the work of 
cavity formation is equal to the work of inserting a new bath molecule into 
the fluid, which in turn, is equal to the configurational part of the chemical 
potential [3]. The SPT theory has been extended to mixtures [4]. SPT has 
also been extended to give the work of inserting a hard sphere into a bath 
of molecules which have hard cores and soft repulsive and attractive forces 
[5]. SPT provides exact results for the work of cavity formation in two 
extremes of core or cavity size: 

when the test particle has a radius of zero and 

when the cavity has effectively an infinite radius. 

For intermediate cavity sizes SPT provided a reliable interpolation formula 
for the work of cavity formation. 

The work of cavity formation obtained from SPT can be used in the 
computation of the chemical potentials of species which are not hard 
spheres. Solvation has been considered as a process in which a molecule of 
solute is moved from a fixed location in an ideal gas phase to a fixed loca- 
tion in the fluid of interest [6]. The solute molecule is then liberated to 
move freely within the fluid. Workers interested in solvation have con- 
sidered that the free energy change associated with the interphase transfer 
step consists of two parts [7]. The first part is the work of creating a cavity 
in the fluid big enough to hold the solute; the free energy change for this 
part is positive. The second part arises when the solute is placed within the 
cavity and is allowed to interact with the surrounding molecules. The free 
energy change associated with this second part is usually negative. The 
inventors of SPT recognized that the work of forming a cavity just big 
enough to contain the solute (which is presumed to have a hard core) was 
given approximately by their theory [5]. They proposed that the work 
which results from the action of forces which reach outside of the cavity, 
work which is due to soft repulsive and attractive forces between the solute 
and its surroundings, be calculated by using a Kirkwood charging process. 
In this paper we first review the equations from SPT which can be used to 
estimate the work needed to form a cavity in the fluid. Then we will 
describe the application of a Kirkwood charging process [-8] to the 
calculation of the contribution to the chemical potential associated with the 
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soft forces. Then we describe a procedure for estimating the distribution 
functions about the test particle. Finally, we give the results of a procedure 
which combines the work of cavity formation from SPT with the contribu- 
tion associated with soft forces determined from Kirkwood charging. The 
model fluid used combines a Lennard-Jones (L J) pair potential with a hard 
core cutoff. The results are compared to simulation data for residual Gibbs 
free energies in pure LJ fluids and for excess Gibbs free energies in LJ 
mixtures. The combination of scaled particle theory and the Kirkwood 
charging process promises to yield a fast, accurate method for estimating 
chemical potentials. 

2. FORMAL DEVELOPMENT 

The chemical potential of a solute consists of two contributions. One 
contribution is the work needed to make a cavity in the fluid large enough 
to contain a test solute particle. This contribution is equivalent to the work 
needed to insert the hard core of a test particle into the fluid. The other 
contribution is the work done by the test particle against the soft repulsive 
and attractive forces in the fluid. Calculation of both contributions requires 
knowledge of the pair correlation functions for molecules about the test 
particle. We show (in Section 3) that the work needed to insert the core 
of a test particle can be estimated accurately by scaled particle 
theory--provided that these correlation functions are known accurately. 
The accuracy of the estimated soft contribution depends only on the 
accuracy of these correlation functions. We demonstrate a procedure for 
estimating pair correlation functions about a test particle using an integral 
equation theory. Therefore, the principle approximation in the chemical 
potential calculation is the approximate closure to the system of integral 
equations. 

SPT gives the work required to insert the hard core of a molecule into 
a fluid. Therefore, in applications of SPT, the pair potential between 
molecules of species i and j must have an infinitely repulsive core, 

uo(r)= { +~  r<~Ro=(Ri+RJ) 
Oij(r) Re<r, (1) 

where r is assumed in this work to have the form of a Lennard-Jones 
potential. In this case Ri is the radius of the hard core of molecules of 
species i. Given a pair potential of the above form, the chemical potential 
of species i can be divided into hard core and soft contributions 

kti= #H /~S 
i ~- i (2) 



76 Pfund, Lee, and Cochran 

The hard core contribution equals the ideal gas chemical potential of 
species i plus the work needed to insert the core of a molecule into the fluid 
at a fixed point: 

H w(R,)  
~T = ln[pih3/(2~mikT) 3/2] + (3) 

k~T-- 

The first term in Eq. (3) is the ideal gas chemical potential for a species 
with molecular mass mi; the second term is the work of insertion. 

Scaled particle theory provides a cubic formula for the work of inser- 
tion. The theory gives an expression for the work of forming a cavity in the 
fluid of radius r. When the cavity radius equals the core radius, then the 
work of cavity formation equals the work of inserting the molecular core. 
The SPT formula for the work cavity formation is 

47zPr 3 
flW(r) = flW(O) + Ar + Br 2 + - -  (4) 

3kT 

where /~ = 1/kT. The pressure-dependent term is necessary to ensure that 
the work consists only of pressure-volume work when the cavity radius is 
large. The /~W(0) term is the exact expression provided by SPT for the 
work of forming a cavity of zero radius [-4] 

flW(O) = -ln(1 - r 

The density-dependent functions ~L are defined by 

(5) 

7"~ m 

~L = g,~l= Pi(2Ri)L (6) 

where m is the number of different species in the mixture. In SPT the coef- 
ficient A is determined by imposing continuity on the derivative of the 
work when the cavity size is zero. The result is [4] 

/~ d__~_rW _ 6 r  - A (7) 
r=o 1 - r  

SPT gives an exact expression for the derivative of the work when the 
cavity radius equals the radius of a molecule of spcies j :  

f l d W  =4z t (R j+R1)2p lg l~ (R j+RI ,~=O ) 
"-~-F r =  R j 

+ 4rc(Rj + R2) 2 P2 g2o(Rj + R2, 2 = 0) (8) 
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In the above equation g~c is the pair correlation function for molecules of 
species i about a molecule of species c evaluated at the core-to-core contact 
distance Rj+  R~. These contact values for the hard core-bath molecule 
distribution functions can obtained from the integral equation theories. 
Applying the constraint given by Eq. (8) to Eq. (4) yields an expression for 
the coefficient B: 

2TO ~ pi(Re+ Rj)2 gi,(R'+ R] ' )~=0) 

2~ 
k~PRj-[3~2/(1-~3)]/Rj (9) 

where the test particle is considered to be the core of a molecule of species 
j. The resulting expression for the work of insertion is 

4 3 W(R)kT ln(1 -d3)+.  [6~2/(I --s R~+BfR2+~-~rcPR~ (10) 

The soft contribution/~s is the change in the Helmholtz free energy (at 
constant temperature, volume, and number of molecules of each species) 
which results when the interaction potential between the inserted hard core 
(or test particle) and the surrounding molecules is turned on. Specifically, 
the pair potential between the test particle (denoted by subscript c) and 
molecules of species i is given by 

u~o(r) ~s =ui~ (r) + 2r (11) 

Computation of #s requires knowledge of the pair correlation functions for 
molecules about the test particle when the coupling parameter 2 is between 
zero and one. When 2 = 0, the test particle consists of the hard core of a 
molecule of species j. When 2 = 1, the test particle is identical to any other 
molecule of species j. If the chemical potential of a molecule of species i is 
desired, then 

Jo [pl r g,c(r, ,~) k T -  kTJo 
+ p2(~zi(r) gz~(r, 2)] 4nr2dr d2 (12) 

where gic(r; 2) is the radial dstribution function for molecules of species 
about the test particle. Once these distribution functions have been deter- 
mined for a range of 2, the above integration can be performed numerically 
to obtain the soft contribution to the chemical potential. 
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Integral equation theories can be used to obtain the distribution 
functions for molecules about the test particle. Consider a ternary mixture 
of molecules of species 1, molecules of species 2, and one test particle. The 
test particle interacts with the other molecules in the mixture with pair 
potentials given by Eq. (4). The system of two Ornstein-Zernike (OZ) 
equations for the ternary mixture with one species (the test particle) at 
infinite dilution are 

h i c ( 2 ) - G o ( 2 ) = p l  f dSc~lhlo(2)+p2 f dsci2h2~(2) (13) 

where the species index i equals 1 or 2. 
The hic are the total correlation functions for molecules of species i 

about the test particle. The total correlation functions are dependent on the 
value of the coupling parameter. The test particle OZ equations are exact 
and can be considered to be the definitions of the direct correlation func- 
tions cic. The c~j are the direct correlation functions for molecules of species 
1 and 2 with each other. The c o are independent of the coupling parameter 
2 and obey the system of three OZ equations for species 1 and 2: 

hij-cij =pl f dScilhlj ~-p2 f dsci2h2j (14) 

The bath molecule correlation functions can be calculated using accurate, 
modern integral equation theories. One such theory is the HMSA theory of 
Zerah and Hansen [9]. 

The test particle OZ equations make two equations in the four 
unknown functions h~c, h2c, c~c, and c2c. In order to solve the integral 
equations for all four functions, an additional pair of closure equations 
must be specified. The background correlation functions for the test par- 
ticle-molecular interactions for a given value of the coupling parameter 2 
can be approximated using the following perturbative equation: 

1 + (15) 
yio(2) = Yi: 1 + (h o -  co) J 

where Yic is the background correlation function for molecules of species i 
a b o u t  the test  particle.  The  test  part ic le  is c o n s i d e r e d  to  be ident ica l  to  a 
molecule of species j when 2 = 1. Thus 

yio(2 = 1 ) = Yo 

h,o(2 = 1)=h ,  7 (16) 

cir = 1 ) = cij 
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This type of closure relation has been refered to as PYP or Percus-Yevick 
perturbed [10]. The basic assumptions embodied in this approximation 
are 

(1) the fundamental Percus-Yevick assumption as stated in Ref. 10, 
and 

(2) Ih,r - -  Cic] < 1. 

The system of two OZ equations and two closure equations can 
be solved numerically to obtain the distribution functions of the bath 
molecules about the test particle for any value of the coupling parameter, 
allowing numerical integration of the Kirkwood charging integral. This 
process also yields the contact values of the distribution functions for the 
bath molecules about the test particle when 2 = 0. The contact values are 
then used in Eqs. (9) and (10) to estimate the work of insertion. 

In the following section it is shown that Eq. (10) for the work of 
insertion is accurate provided that accurate contact values for the pair 
correlation functions are used in Eq. (9). Equation(12) for the soft 
contribution to the chemical potential is formally exact. Therefore, the 
principle sources of error in the chemical potential calculation are the 
closure equations used in obtaining the distribution functions for molecules 
about the test particle. 

3. RESULTS 

Results from the theory were compared to available simulation results 
for chemical potentials, residual Gibbs free energies, and excess free 
energies of mixing of Lennard-Jones fluids. The Lennard-Jones potential 
does not have the form of Eq. (1); however, the properties of a fluid with 
a hard core cutoff potential can be made to approach those of a Lennard- 
Jones fluid by choosing a core diameter which is sufficiently small. Core 
sizes were set to the smallest values which did not result in floating point 
overflow of the calculated Boltzmann factor. The maximum allowed 
logarithm of the Boltzmann factor was set at 21. Using smaller core sizes 
did not change the results significantly. 

There are three main steps in the computation of the chemical 
potential. First, the direct, total and background correlation functions for 
the molecules in the bulk fluid are found. The accurate HMSA integral 
equation theory developed by Zerah and Hansen [9] is used to provide 
these functions. The HMSA solution for the distribution functions also 
yields a very accurate estimate of the pressure. In the second step the 
coupling parameter is varied between zero and one, and the distribution 
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functions for the molecules about the test particle are obtained for each 
value of the coupling parameter. The integral over the coupling parameter, 
Eq. (12), which gives the soft contribution to the chemical potential is 
evaluated numerically. The distribution functions about the test particle are 
obtained by solving the test particle OZ equations (13) in Fourier trans- 
form space using fixed-point iteration. The distribution functions for zero 
coupling parameter are then extrapolated to the contact point of the cores 
with the test particle. These contact values of the distribution functions are 
used in the estimation of the work of inserting the core of the test particle. 
The third step is the calculation of the work of insertion using the SPT 
formula [Eq. (10]. The pressure used in the work formula is that obtained 
from the HMSA solution. 

2.5- 

Radial 
Distribution 
FunctJon, g ]c 
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0.5 

0.G 
0.5 1.0 1.5 2.0 2.5 310 
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Fig. 1. Test particle distribution in low-density mixtures. Results 
are for a binary mixture with a11=3.405/~,  a t 2 = 3 . 8 3 0 5 ~ ,  
a22 = 4.256/~, d l t =  2.8091/~, d12 = 3.2348/~, d22 = 3.5752 ~, and 
eu/k=e12/k=e22/k=l19.8K. The mixture consisted of 7 5 %  
species 1 at kT/e = 1.35 and pa~l =0.03. Shown are distribution 
functions for molecules of species 1 about a test particle for several 
values of the coupling parameter 2. When Z = 1 the test particle is 
a member of species 2. At low densities the test particle distribu- 
tion functions are equal to the Boltzmann factors of the species 
1-test particle pair potentials. 
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The procedure was first tested at low densities where the SPT and 
integral equation closure approximations made in the theory are very 
accurate. The purpose of this test was to show that the mechanics of the 
coupling process were being carried out correctly. In the low-density case 
the test particle distribution functions match the Boltzmann factors for the 
interactions of the test particle with the molecules in the surrounding fluid. 
Plotted in Fig. 1 are the species 1-test particle distribution functions for an 
example case where the chemical potential of species 2 was being 
calculated. The Lennard-Jones (with a hard core cutoff in the pair poten- 
tial) mixture used is described in the figure. The curve in Fig. 1 for coupling 
parameter equal to one is the species 1-species 2 distribution function. The 
curve for coupling parameter equal to zero shows that the test particle's 
only influence on the surrounding molecules at low density is to exclude 
them from a cavity with a radius equal to the radius of the test particle plus 
the radius of a molecular core. For  the example mixture obeying the core- 
cutoff Lennard-Jones potential, the procedure reproduced the exact second 
virial results for the residual chemical potentials of each species to within 
0.01. The core contributions to the chemical potentials matched the second 
virial core contributions to within 0.001. The soft contributions to the 
chemical potentials matched the second virial soft contributions to within 
0.01. 

The scaled particle theory Eq. (10) provides an accurate estimate for 
the work of inserting the hard core of the test particle into the fluid. 
Accurate results are obtained when the contact values of the correlation 
functions for the molecules about the test particle are accurate. Equa- 
tion (10) was tested for two cases for which the contact values are known 
accurately: (1) a mixture of hard spheres and (2) a pure Lennard-Jones 
fluid at moderate density. For hard sphere mixtures the contact values of 
the correlation functions and the pressure are accurately estimated by the 
Carnahan-Starling (CS) equation 1-11]. Equation (10) was compared to 
the simulation results of Alder [12] for excess Gibbs free energies of 
mixing. CS contact values and pressures were used in the formula. The con- 
ditions used and the results obtained are given in Table I. The average 
absolute error in the excess Gibbs energy predicted by Eq. (10) was 1.62 %. 
The results obtained were nearly identical to those obtained by thermo- 
dynamically integrating the CS equation. For Lennard-Jones mixtures at 
moderate densities the work of insertion can be split into second and third 
virial contributions--each of which can be calculated by an integration of 
Mayer factors. The result can then be compared to Eq. (10). A repre- 
sentative calculation was made for the conditions: pa3= 0.15, kT/e = 1.35, 
d/a = 0.825. The pressure was obtained from the HMSA calculation and 
the contact values of the correlation functions were obtained from PYP. 
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Table I. Excess Gibbs Free Energies from Scaled Particle Theory for a Hard Sphere Mixture a 

Predicted excess Gibbs energy ge/kT 

Packing fraction Exact b Theory c 

0.2333 - 0.60 - 0.591 
0.2692 -0 .81  -0 .798  
0.3106 - 1.13 - 1.107 
0.3583 -1 .63  -1 .587  
0.3808 - 1.92 - 1.875 
0.4393 --2.91 -2 .880  
0.5068 -4 .77  -4 .759  

a Excess Gibbs energies for mixing at Constant packing fraction. The diameter ratio used was 
three to one. Each mixture was equimolar. 

b Simulation results from Ref. 12. 
c From Eqs. (9) and (10) with properties from Ref. 9. 
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Test particle distribution functions in a pure fluid at low Fig. 2. 
temperature and high density. The reduced density is po -3= 0.75 
and the reduced temperature is kT/e = 0.928. Shown are distribu- 
tion functions for bath molecules about a test particle for several 
values of the coupling parameter 2. When .~ = 1 the test particle is 
identical to a bath molecule. The calculated distribution functions 
show excessive overlap of the bath molecules with the test particle 
which corresponds to the appearance of a second coordination 
shell which is very close to the test particle. 
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Equation (10) reproduced the total of the second and third virial contribu- 
tions to the work of insertion and was in error by only -0 .4  %. 

The theory has been used to predict residual (or configurational) 
Gibbs' free energies for pure Lennard-Jones fluids. It was found that 
accurate prediction are made at relatively high temperatures (kT/e >1-2). At 
lower temperatures residual Gibbs energies are underpredicted because of 
the too-close approach of molecules in the fluid to the test particle. Results 
from the theory were compared to results from the Lennard-Jones equa- 
tion of state of Nicolas et al. [13] at T* =kT/e =2. The theory and the 
equation of state agreed to an average absolute percentage difference of 
7.5 % over a density range of p* = pa 3 from 0.1 to 0.8. The largest error 
occurred at a reduced density of 0.6. Near this density the residual Gibbs 
energy changes sign and has small absolute value so that small absolute 
errors become large percentage errors. Outside of this region the average 
absolute error was 4.7 %. At T * =  2 good results were obtained at high 
densities: at p* =0.8 the error in the calculated residual free energy was 
only -7 .2  %. The test particle distribution functions at T* =2,  p* =0.8, 
reveal that the second coordination shell about the test particle is at a dis- 
tance of about 2a away from the test particle, moving inward slightly as the 
particle is decoupled. At T* = 0.928, p* = 0.75, the test particle distribution 
functions are qualitatively different. At this low temperature and high den- 
sity the second coordination shell for the completely decoupled test particle 
moved inward to about l ag ,  reflecting a clustering of the molecules about 
the test particle. The distribution functions for these conditions are plotted 
in Fig. 2. The very close approach of molecules to the test particle made the 
integrand of Eq. (12) too negative, resulting in underprediction of the 
residual Gibbs energy. At T*--0.928 the theory underpredicted the Gibbs 
energies of Lennard-Jones fluids over the range of reduced densities from 
0.025 to 0.8, as compared to the simulation results of Panagiotopoulos 
etal. [14]. At T* =0.928 the error increased with density, going from 
11.7 % at p* =0.6 to 61.8 % at p* =0.8. 

The theory gives good results for the chemical potentials in binary 
mixtures of Lennard-Jones molecules at high temperatures (kT/e >~ 2). The 
isothermal, isobaric, excess Gibbs free energies of mixing predicted by the 
theory for three mixtures have been compared to the simulation results of 
Shukla and Halle [15]. The fluids examined were equimolar mixtures of 
species with equal characteristic energies and unequal characteristic sizes. 
Since the procedure gives good results for pure fluids at a reduced tem- 
perature kT/e = 2, it was a natural next step to examine mixtures at the 
same reduced temperature. First, residual Gibbs free energies for the pure 
components were calculated under isobaric conditions. The results 
obtained compare favorably with those obtained from Nicolas' equation of 
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Table III. Excess Gibbs Free Energies from Combined Scaled Particle Theory and 
Integral Equat ion Theory for Lennard-Jones  Mixtures at High Temperature a 

85 

Required density (P0-~1) 

Predicted excess 
Gibbs energy gE 

(J.  t oo l - l )  

Mixture 0-22 (A.) Exact b HMSA Exact b Theory 

1 4.256 0.4091 0.4120 - 66 - 68.3 
2 5.108 0.3142 0.3155 - 228 - 249.4 
3 5.959 0.2418 0.2422 - 4 3 0  -457 .5  

a Excess Gibbs energies for isothermal, isobaric mixing at kT/e=2.0, Pail~e= 1.2. Pure 
component  free energies taken from column 7 in Table II. All mixtures are equimolar with 
~ll/k = ~12/k = e22/k = 119.8 K, 0-1a = 3.405 A,, and 0-12 = (0-al + 0-22)/2. 

b Simulation results from Ref. 15. 

state. Detailed information on the molecular sizes of each species, the den- 
sities at which isobaric conditions are reached, and the calculated residual 
Gibbs energies for the pure components are listed in Table II. Next, den- 
sities were determined for each of the three mixtures using the HMSA 
theory to give pressures equal to the simulation results. Finally, the chemi- 
cal potentials of each species in Shukla and Haile's mixtures were estimated 
with the theory and the excess Gibbs free energies of mixing were 
calculated at constant temperature and pressure. Detailed information on 
the densities at which isobaric conditions were reached and the calculated 
excess Gibbs energies for the mixtures are listed in Table III. Results from 
the theory were 3 to 9 % low, the theory giving results that were 6.4 % low 
for the most asymmetric mixture. 

4. CONCLUSIONS 

Scaled particle theory can be combined with a Kirkwood charging 
process to obtain accurate estimates of the chemical potentials in fluids 
with realistic attractive and repulsive forces. Acceptable results were 
obtained from the current version of the theory only at high temperatures 
(kT/E ~>2). At lower temperatures accurate results were obtained only at 
low to moderate densities (pa3~< 0.5). Results at lower temperatures were 
compromised by the related consequences of assuming a particular core 
size for the test particle and of approximations made in the closure equa- 
tion for the test particle distribution functions. An improved procedure is 
to replace the division of the test particle pair potential used [Eq. (1)] with 
the Andersen etal. [16] division. Then a perturbation theory similar to 
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that  of L a d o  [17 ]  is used to es t imate  the con t r ibu t ion  of  the W C A  
repulsive force to the chemical  potent ia l  with scaled part ic le  theory.  Such 
a division of the pa i r  po ten t ia l  reduces the requirements  for accuracy  
p laced  on the closure equat ions  for the test par t ic le  d i s t r ibu t ion  functions 
since the s t ructure  of  the fluid is pe r tu rbed  to a smaller  extent  as the 
par t ic le  is coupled.  O u r  work  in progress  uses this approach .  
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